Chapter 4: Network Layer

Chapter goals:
- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - dealing with scale
 - advanced topics: IPv6
- instantiation, implementation in the Internet
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Network layer

- transport segment from sending to receiving host
- on sending side, encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router's input to appropriate router output

- **routing**: determine route taken by packets from source to dest.
 - **routing algorithms**

Analogy:

- **routing**: process of planning trip from source to dest
- **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

Routing algorithm

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header
Network service model

Q: What *service model* for “channel” transporting datagrams from sender to receiver?

Example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network layer service models:

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bandwidth</td>
<td>Loss</td>
</tr>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
</tr>
</tbody>
</table>
Connection setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25

- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved

- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

Diagram:

1. Send data
2. Receive data
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Router Architecture Overview

Two key router functions:
- run routing algorithms/protocol (RIP, OSPF, BGP)
- *forwarding* datagrams from incoming to outgoing link
Input Port Functions

- **Decentralized switching:**
 - given datagram dest., lookup output port using forwarding table in input port memory
 - goal: complete input port processing at 'line speed'
 - queuing: if datagrams arrive faster than forwarding rate into switch fabric

Physical layer:
- bit-level reception

Data link layer:
- e.g., Ethernet
 - see chapter 5
Three types of switching fabrics

Network Layer 4-13
Buffering required when datagrams arrive from fabric faster than the transmission rate

Scheduling discipline chooses among queued datagrams for transmission
Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
The Internet Network layer

Host, router network layer functions:

- **Routing protocols**
 - path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - addressing conventions
 - datagram format
 - packet handling conventions

- **ICMP protocol**
 - error reporting
 - router “signaling”

Transport layer: TCP, UDP

Network layer
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP protocol version</td>
<td>Number</td>
</tr>
<tr>
<td>header length (bytes)</td>
<td>“Type” of data</td>
</tr>
<tr>
<td>max number remaining</td>
<td>Hops (decremented at each router)</td>
</tr>
<tr>
<td>upper layer protocol</td>
<td>Protocol to deliver payload to</td>
</tr>
</tbody>
</table>

Upper Layer Protocol

- **32 bits source IP address**
- **32 bits destination IP address**

Options (if any)
- E.g. timestamp, record route taken, specify list of routers to visit.

Data
- Variable length, typically a TCP or UDP segment

How much overhead with TCP?
- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead
IP Fragmentation & Reassembly

- Network links have MTU (max. transfer size) - largest possible link-level frame.
 - Different link types, different MTUs
- Large IP datagram divided ("fragmented") within net
 - One datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
IP Addressing: introduction

- **IP address**: 32-bit identifier for host, router *interface*

- **interface**: connection between host/router and physical link
 - routers typically have multiple interfaces
 - host typically has one interface
 - IP address is associated with each interface

```
223.1.1.1 = 11011111 00000001 0000001 00000001
223 1 1 1 1
```
Subnets

- **IP address:**
 - subnet part (high order bits)
 - host part (low order bits)

- **What’s a subnet?**
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router
IP addressing: CIDR

CIDR: Classless InterDomain Routing
- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

CIDR part

host part

11001000 00010111 00010000 00000000

200.23.16.0/23
IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config

- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - “plug-and-play”
Goal: allow host to dynamically obtain its IP address from network server when it joins network

- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected on “on”)
- Support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts “DHCP discover” msg
- DHCP server responds with “DHCP offer” msg
- host requests IP address: “DHCP request” msg
- DHCP server sends address: “DHCP ack” msg
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000 200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000 200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000 200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000 200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000 200.23.30.0/23</td>
</tr>
</tbody>
</table>
IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers
- allocates addresses
- manages DNS
- assigns domain names, resolves disputes
NAT: Network Address Translation

Rest of Internet

Local network (e.g., home network) 10.0.0/24

138.76.29.7

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

All datagrams leaving local network have **same** single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
IPv6

- **Initial motivation**: 32-bit address space soon to be completely allocated.

- **Additional motivation**:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:
- fixed-length 40 byte header
- no fragmentation allowed
IPv6 Header (Cont)

Priority: identify priority among datagrams in flow

Flow Label: identify datagrams in same “flow.”
(concept of “flow” not well defined).

Next header: identify upper layer protocol for data

<table>
<thead>
<tr>
<th>ver</th>
<th>pri</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>payload len</th>
<th>next hdr</th>
<th>hop limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>source address</th>
<th>(128 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>destination address</th>
<th>(128 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

32 bits
Other Changes from IPv4

- **Checksum**: removed entirely to reduce processing time at each hop
- **Options**: allowed, but outside of header, indicated by “Next Header” field
- **ICMPv6**: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - multicast group management functions
Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- **Tunneling**: IPv6 carried as payload in IPv4 datagram among IPv4 routers
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Interplay between routing, forwarding

Value in arriving packet's header

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>
Graph abstraction

Graph: $G = (N,E)$

$N = \text{set of routers } = \{ u, v, w, x, y, z \}$

$E = \text{set of links } = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$
Graph abstraction: costs

- $c(x, x') = \text{cost of link } (x, x')$
 - e.g., $c(w, z) = 5$
- cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path $(x_1, x_2, x_3, \ldots, x_p) = c(x_1, x_2) + c(x_2, x_3) + \ldots + c(x_{p-1}, x_p)$

Question: What’s the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path
Routing Algorithm classification

Global or decentralized information?

Global:
- all routers have complete topology, link cost info
- “link state” algorithms

Decentralized:
- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- “distance vector” algorithms

Static or dynamic?

Static:
- routes change slowly over time

Dynamic:
- routes change more quickly
 - periodic update
 - in response to link cost changes
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Hierarchical Routing

Our routing study thus far - idealization
- all routers identical
- network “flat”

... not true in practice

scale: with 200 million destinations:
- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network
Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)

- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway router
- Direct link to router in another AS
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Intra-AS Routing

- also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP, OSPF, IGRP
 - BGP
- 4.7 Broadcast and multicast routing
Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): *the de facto standard*

- BGP provides each AS a means to:
 1. Obtain subnet reachability information from neighboring ASs.
 2. Propagate reachability information to all AS-internal routers.
 3. Determine “good” routes to subnets based on reachability information and policy.

- allows subnet to advertise its existence to rest of Internet: "I am here"
Why different Intra- and Inter-AS routing?

Policy:
- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Scale:
- hierarchical routing saves table size, reduced update traffic

Performance:
- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast
Broadcast

- deliver packets from source to all other nodes
- source duplication is inefficient:

> source duplication: how does source determine recipient addresses?
In-network duplication

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm
- controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before
 - Node keeps track of pckt ids already brdcsted
 - Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source
- spanning tree
 - No redundant packets received by any node
Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A

(b) Broadcast initiated at D
Multicast Routing: Problem Statement

- **Goal:** find a tree (or trees) connecting routers having local mcast group members
 - **tree:** not all paths between routers used
 - **source-based:** different tree from each sender to rcvrs
 - **shared-tree:** same tree used by all group members
Tunneling

Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router
- receiving mcast router unencapsulates to get mcast datagram
Chapter 4: summary

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing