Data Analytics for Power Grid Operations

Anjan Bose
Washington State University
Pullman, WA, USA

NSF Workshop on Real Time Data Analytics
Portland, OR
August, 2018
Power Systems Data

Fixed Data (Assets)
• 7,500 generation plants
• 75,000 substations
• 300,000 miles transmission (100,000 lines and transformers)
• 2.2 million miles distribution (1 million distribution feeders)
• 300 million customers

Power Flow data for transmission system ~ 2GB
Data for all equipment in PB
Applications for System Data

• System data for assets is fixed (changes slowly)
• Each engineering application requires a (small) subset of systems data
• Are there applications that require all data?
 ▪ Asset Management
 ▪ Inventory Control
 ▪ Maintenance Records
 ▪ Automated Mapping/Facilities Management
 ▪ Etc.
Measurement Data (Variables)

- Power, Var, Voltage, Current, Frequency, etc.
- SCADA (EMS, DMS)
- PMU data
- AMI data
- Substation, Generation, Large Load data (stored)

- Measured at various frequencies
 - EMS SCADA at 2-10 seconds
 - DMS SCADA at 10-60 seconds
 - PMU 30-120 times per second
 - AMI 5-15 minutes
 - Substation/Plant data stored at various rates
Average Data Flows Today

• Average Reliability Coordinator has 10 Balancing Authorities (control centers)
• Average Control Center has 100 high voltage substations
• Average substation has 100 measurement points
• Average polling rate for real time data is 5 seconds

So

• Average data rate from each substation is 20/sec
• Average data rate to a control center is 2K/sec
• Average data rate to a RC is 20K/sec
Simulated Bus Voltages by Powertech TSAT
Generated PMU Measurements
33 msecs time steps
Data Collection by PMUs

• PMU sampling rates: 30-120 per second
• Assume 100 values per second

If we assume all 100 points in a sub are PMUs

• Average data rate per sub is 10K/sec
• Average data rate for the total of 100 subs in a BA is 1M/sec
• Average data rate for the RC is then 10M/sec
Data Base Issues

• Real time data base must be distributed
 ▪ Large amounts of calculated data must be part of this data base
• Static data base must be distributed
• Historical data base will require still another design
• Substation data bases and system level data bases have to be coordinated
• All data bases in the same interconnection will have to be coordinated
• Standards will be key
Data Exchange Issues

• Within one organization
 ▪ Data movement between EMS, BMS, DMS, OMS, AMI, etc. is non-trivial

• Within one hierarchy
 ▪ Several TOs to ISO
 ▪ Several BAs to RC

• Laterally between neighbors
 ▪ Bilateral agreements too many to be manageable

• Bandwidth, volume, latency

Standardization is the key
Proposed Communications
Cloud WAMS Deployment: Data Archive + Analytics

ISO-NE hosted distribution point

- PMU₁
- PMU₂
- PMU₃
- Replayed C37 Data
- TCP Sender
- 31 PMU Streams
- C37.118

Cloud hosted Ingress point in “data collector” role.

 Archived data

Freeze-Frame File System

Cornell hosted distribution point

- PMU₁
- PMU₂
- PMU₃
- Replayed C37 Data
- TCP Sender
- 42 PMU Streams
- C37.118

Cloud hosted Ingress point in “data collector” role.

 Archived data

Freeze-Frame File System
Applications, Models and Data

• New technologies promise new applications
• Applications may be distributed
• Static data (models) and real time data (measurements) will be distributed
• Communications (hardware/middleware) needed to move data in a timely manner
• IEC/NIST has recommended standards for both data and communications

The CIM standard (IEC 61970) is being widely adopted and is evolving at the same time
Control Centers

• The next generation of control centers will have a more flexible (decentralized) architecture
• The boundaries between various XMS functions (including protection and local controls) will fade
• The automatic coordination between entities that are interconnected will increase
• This will require large movement of data both hierarchically and laterally
• This cannot be done without wide adoption of standards across the interconnection
Large Data Applications

Historical Data (Measurement Data Only)
• Data Science has many usable tools
• Identify measurement anomalies (model-free)
• Identify trends (loads, renewable generation, outages – equipment failures, control operations)
• Identify patterns (correlations between loads, solar, wind, maintenance, external events)
Large Data Applications

Historical Data (Measurement + Model)
• Event analysis
• Identify measurement anomaly (SE bad data)
• Simulation management
• Planning scenario development
• Training scenario development
• Cross infrastructure analysis
• Controller design
Concluding Remarks

• Data science is the use of big data in NEW ways (NOT the use of existing power applications with bigger data)
• Are there uses of data that does not require physical models?
• Are there new applications that take advantage of both big data and physical models?
• Are there on-line applications that can use big data to help operators make decisions?