Resilient Computation in Hierarchical Heterogeneous Systems

Marco Levorato
CS - University of California, Irvine
Whole-System Perspective

A tesseract of interconnected and interdependent systems

Technological
Human
Environmental

Partially funded by NSF ECCS 1611349
Cloud Analysis

Advanced forms of detection and prediction are needed to control the system.

Cloud data analytics

Partially funded by NSF ECCS 1611349
IoT Layer

Key Enabler: Flow of information from IoT devices

Wireless and Wireline Communication Infrastructure

IoT devices

Partially funded by NSF ECCS 1611349
Centralized Approach: Degraded resiliency

- Dependency on another system
- Single point of failure
- Increased attack surface

Congestion, jamming, attacks (DoS), Disconnection

Partially funded by NSF ECCS 1611349
Cascade of Systems

Hierarchical System

Cascade of
• Networks
• Sensors
• Computation devices

Cloud datacenter

Edge datacenter

Edge devices

Partially funded by NSF ECCS 1611349
Classification

Global Classifier

Trained to achieve high accuracy
• In any context
• Using all features

Complex separating surface obtained through a very complex classifier

Partially funded by NSF ECCS 1611349
How do we make the system resilient: Replication

- Resilient to failures (network, devices)
- Lower-layers’ nodes may not be able to run the classifier
- Local view: feature subsampling

Partially funded by NSF ECCS 1611349
How do we make the system resilient: Replication

- Resilient to failures (network, devices)
- Lower-layers’ nodes may not be able to run the classifier
- Local view: feature subsampling

Partially funded by NSF ECCS 1611349
Hierarchical Classification

Pipeline of Classifiers

Partially funded by NSF ECCS 1611349
Hierarchical Classification

Pipeline of Classifiers

Sequence of classifiers of decreasing complexity

Partially funded by NSF ECCS 1611349
Hierarchical Classification

Pipeline of Classifiers

Sequence of classifiers of decreasing complexity

- Reduced bandwidth (reduced risk of congestion, more resilient to attacks)
- Fast (approximated) control if pipeline fails

Partially funded by NSF ECCS 1611349
Hierarchical Classification

Approximation

Simpler classifiers may not perform well enough

Partially funded by NSF ECCS 1611349
Training on the Fly

Global Classifier

Complexity comes from heterogeneity of samples

Complex separating surface obtained through a very complex classifier

Partially funded by NSF ECCS 1611349
Training on the Fly

Context

Context-induced distributions of samples may lead to context-specific good classifiers

“Local” distributions

Partially funded by NSF ECCS 1611349
Online Classifier Training

- Network of collaborative classifiers
- Higher layers’ classifiers tune the parameters of the low layers’ classifiers
- Classifiers follow the dynamics of the system
- Optimal - low complexity - localized filtering and control

Partially funded by NSF ECCS 1611349
In mobile health care systems, the framework proposed cannot be implemented.

Cloud Decision rule
\(\delta: \mathbb{Z} \mapsto \{0, 1\} \)

Node Decision rule
\[
\begin{align*}
\delta(x, \mu) & \geq \mu, \\
x & \in \tilde{X}_0
\end{align*}
\]

\[
\begin{align*}
\tilde{\theta}_{t+1} & = \theta_t - \gamma_t J(z_{t+1}, \theta_t, \mu_t) \nabla_{\theta} f(x_{t+1}, \theta_t), \\
\tilde{\mu}_{t+1} & = \mu_t + \gamma_t J(z_{t+1}, \theta_t, \mu_t), \\
\text{vec}(\theta_{t+1}, \mu_{t+1}) & = \mathcal{H}_D(\text{vec}(\tilde{\theta}_{t+1}, \tilde{\mu}_{t+1})), \\
J(z, \theta, \mu) & \triangleq \hat{I}_{\mu}^{(1)}(f(\chi(z), \theta)) - I_1(z)
\end{align*}
\]

Partially funded by NSF ECCS 1611349
Examples

```latex
\begin{align*}
Z^{(0)} & \quad Z^{(1)} \\
\quad & \\
f(x, \theta) = \mu
\end{align*}
```
Conclusions

Adaptive Hierarchical Computing

- Reduced bandwidth usage
- Reduced response time
- Increased accuracy

Other applications

- Urban IoT systems
- “Personalized” sensing for Mobile Health Care
- Autonomous UAVs

Partially funded by NSF ECCS 1611349
Resilient Computation in Hierarchical Heterogeneous Systems

Marco Levorato
CS - University of California, Irvine